Impact of Transport Infrastructure on Living Standards: Evidence from the Chinese Provinces Directly Affected by the "One Belt, One Road" Initiative

Gwang-Nam Rim^{1*} & Chol-Ju An²

¹ Statistics Department, Faculty of Economics, Kim II Sung University, Pyongyang, Democratic People's Republic of Korea ² Foreign Trade Department, Faculty of Economics, Kim II Sung University, Pyongyang, Democratic People's Republic of

Korea

*Corresponding author: <u>kwangnam@126.com</u>, <u>gn.rim@ryongnamsan.edu.kp</u>

Citation: Rim, G. N. & An, C. J. (2022). Impact of Transport Infrastructure on Living Standards: Evidence from the Chinese Provinces Directly Affected by the "One Belt, One Road" Initiative. *Business Perspective Review* 4(1), 51-69. https://doi.org/10.38157/bpr.v4i1.431

Research Article

Abstract

Purpose: This paper discusses the impact of transport infrastructure on living standards in the Chinese provinces directly affected by the "One Belt, One Road" initiative.

Methods: The impact of transport infrastructures such as railways and highways on people's living standards, more specifically, the household consumption level in the Chinese provinces directly affected by the "One Belt, One Road" was analyzed based on data from 2008 to 2017 from National Bureau of Statistics of China and some databases related to the "One Belt, One Road". Descriptive statistics, correlation, and regression were applied for analysis.

Results: a)The living standards are not improved in proportion to the development level of railways and highways due to influences of various factors on living standards, b) the development level of transport infrastructure does not have enough impact on reducing the gap in living standards between urban and rural areas in the Chinese provinces under study, c) the development level of transport infrastructure has a relatively more significant impact on living standards in coastal provinces than inland provinces under study, and d) in the future, the measures to develop the transport infrastructure may provably contribute to achieving targets for enhancing the living standards under the realization of the "One Belt, One Road" initiative.

Implications: To enhance the living standard, the management of investment in transport infrastructure as well as other factors, such as employment, income distribution, supply of goods and services, price level, etc. affecting people's living standard ought to be improved in line with the features of a given region.

Keywords: Transport Infrastructure, Household Consumption Expenditure, Urban Household Consumption Expenditure, Rural Household Consumption Expenditure, One Belt, One Road, Chinese Economy.

1. Introduction

In the future, the "One Belt, One Road" (OBOR) initiative proposed by China in 2013 will significantly affect the sustainable economic growth and people's consumption level in China (National Development and Reform Commission 2015). The particular element of the OBOR initiative is the infrastructural connectivity, and transport infrastructure (TI) such as railways, roads, ports, and airports will be the particular focus (Haggai, 2016). In this context, it is necessary to consider the relationship between TI and living standards and how much TI affects the living standards in the Chinese provinces directly affected by OBOR. The living standard is the indicator reflecting the socio-economic situation in a given region, and one of the key aims of the OBOR initiative is to enhance the people's living standards in China. Studies until now have mainly been focused on how the infrastructures, in particular, TI affect people's income or poverty level. Many scholars have studied the impact of TI on the increase in income and the decrease in income differences and demonstrated that TI positively affected these aspects. However, these studies have no generality in a view of the features of a given region, and whether or not the OBOR initiative positively affects the people's living standards. Therefore, it is significant to analyze these impacts in the Chinese provinces directly affected by OBOR. From this, the following research questions need to be answered.

RQ1: Does the development of TI positively affect the living standards, and

RQ2: How does the development of TI affect the differences in living standards between urban and rural regions?

This paper aims to analyze the relationship between the household consumption level and TI's elements such as railways and highways in the Chinese provinces directly affected by OBOR. Based on the research purpose, this paper is organized as follows. In the first section, we have discussed the previous studies which analyzed the impact of TI on income and poverty reduction. The second section analyzes the relationship between the development level of TI and household consumption expenditure (HCE) and the difference between urban household consumption expenditure (UHCE) and rural household consumption expenditure (RHCE), using the data from 2008 to 2017 with regards to province-specific HCE, UHCE, RHCE, length of railways in operation, and length of highways, using descriptive statistics, and graphic description approach. The third section analyzes the impacts of the development level of TI's elements such as densities of railways and highways on HCE and the difference between UHCE and RHCE according to the inland and coastal provinces based on correlation and regression analysis. The rest of the paper discusses the results, discussions, and conclusion.

2. Previous studies on the impact of infrastructure on income and poverty reduction

In past studies, the mainstream focus was on the impacts of TI on economic growth, employment, and income. Among them, the research close to this study is the one on the impact of TI on income and poverty reduction. Calderón and Servén (2004) studied the impact of infrastructure on economic growth and income distribution and demonstrated that the development of infrastructure positively affected poverty alleviation using a large panel data set encompassing over 100 countries and spanning the years from 1960 to 2000. López (2003) also assesses the contribution of infrastructure to both growth and income distribution using telephone density as the infrastructure indicator and finds that infrastructure raises growth and reduces income inequality. Ferreira (1995) presents a model in which expansion of public investment reduces inequality, Estache (2003) illustrates that infrastructure gives additional productive opportunities and brings more revenues by helping poorer individuals and underdeveloped areas to get connected to core economic activities. Also, Gannon and Liu (1997) find that infrastructure development in poorer regions reduces production and transaction costs, thus increasing income. Estache and Fay (1995) find that enhanced access to roads and sanitation has been a key determinant of income convergence for the poorest regions. Jacoby (2000) observes that improvements in communication and road services imply capital gains for poor farmers.

Some scholars demonstrate that enhancing the availability and quality of infrastructure services for the poor in developing countries has a significant positive impact on their health and/or education and, hence, on their income and welfare as well (for example, Brenneman and Kerf, 2002; Leipziger et al. 2003; Behrman and Wolfe, 1987; Lavy et al. 1996; Lee et al. 1997; Galiani et al. 2002). Estache et al. (2000) said that to reduce income inequality, infrastructure expansion, improved access, and/or enhanced quality are needed for low-income households. Mu and van de Walle (2007) suggest that road improvements can exert an almost immediate impact on poverty reduction through the human capital channel, and Khandker et al. (2009) demonstrate that rural roads can contribute to poverty alleviation by providing access to markets and human capital facilities. Furthermore, they find that road development led to a statistically significant increase in annual per capita consumption of 11 % in project villages. Fan et al. (2002) find that irrigation infrastructure directly contributes to the growth of the agricultural sector and to poverty alleviation. Fan and Zhang (2008) emphasized the importance of the market access channel in alleviating poverty in poor countries. Studying the relationship between the well-being of the poor and irrigation infrastructure in Indonesia, Balisacan and Pernia (2002) show that a 1 % increase in the proportion of irrigated farm area to total farm area leads to a 0.23–0.31 % increase in the mean per capita consumption expenditures

According to Huang et al. (2005), the incidence of poverty would fall by 1.6 % points if all non-irrigated agricultural land were irrigated. Bhattarai and Narayanamoorthy (2003) also demonstrate the positive impact of irrigation on poverty reduction. On the other hand, based on Ugandan data, Deininger and Okidi (2002) demonstrate that access to key public goods, such as electricity determines households' ability to increase their income and reduces the risk of falling into poverty. According to Warr (2005), the government's investment in TI in underdeveloped regions helps in falling the incidence of poverty and in reducing income inequality. Zou et al. (2008) find that the TI investment is the source of economic growth, but the eastern region is faster than the middle and western region in economic growth, and the expansion of TI investment increases the income gap because of the imbalance of regional transport investment emerges in China. Yang and Huabei (2017) analyzed the relationship between the investment stock of rural infrastructure and the consumption of rural residents and demonstrated that in different regions and different types of infrastructure, the effect on consumption is different using the data of 30 provinces in China from 2000 to 2010. Summarizing the views of several scholars who considered the impact of TI on the income gap, Chunping and Menghan (2019) showed that China's transportation infrastructure construction has significantly narrowed the income gap using China's provincial panel data from 2000 to 2010. According to them, for every 1% increase in transportation infrastructure density, the income distribution gap will be reduced by 0.015 6%.

As seen from a previous study, the impact of TI on living standards has been considered limited in revenue and income gap, and poverty alleviation. People's living standards are mainly concerned with consumption rather than income or revenue, and thus, it is significant to study how the TI project affects people's consumption levels under OBOR.

This paper focuses on analyzing the impact of infrastructural projects under OBOR on regional living standards, and thus, discusses the relationship between TI and HCE in the Chinese provinces directly affected by OBOR.

3. Material and methods

According to National Development and Reform Commission et al. (2015), the provinces directly affected by OBOR are nine, which include 5 inland provinces, [Shaanxi, Gansu, Ningxia Autonomous Region (Hereafter, Ningxia), Qinghai, and Xinjiang Uygur Autonomous Region (Hereafter, Xinjiang)] and 4 coastal provinces [Fujian, Guangdong, Guangxi Autonomous Region (Hereafter, Guangxi), and

Hainan]. These regions are along with routes under OBOR, and thus, they are directly affected by OBOR. The study is based on data from the year 2008 to 2017 for the above-mentioned nine Chinese provinces. Data are from the National Bureau of Statistics of China and various databases related to OBOR. Important elements of TI under study are railways and highways in terms of physical measurements. Furthermore, we have used relative values, not absolute values regarding TI such as railways and highways to ensure the comparability among provinces in the study. This paper aims to study the relationship between the development level of TI and living standards according to Chinese provinces, thus, ensuring the comparability among provinces in indicators is of significance. In general, previous studies didn't consider region-specific features for the purpose of studying the overall TI, and thus, didn't bring forward the issue of ensuring the comparability among provinces in the study as important. From this, we have used indicators such as density of railways (km/1000 km²) and density of highways (km/1000

km²) as they reflect TI's development level. The reason for selecting the HCE indicator like the one reflecting the living standards is that this directly reflects the people's living standards. In the previous study, there have been many discussions on the impacts of TI on income and poverty reduction, but income itself is not consumption. The factors affecting people's consumption include income, price level, supply level of goods and services, employment rate, the propensity to consume, and so on, and these affect the process of transforming income into consumption. Besides, factors such as price level, supply level of goods and services, and employment rate are much related to infrastructure. From this, we have selected the indicator reflecting the HCE as the consumption level. Data to make the above calculations are published by the National Bureau of Statistics of China. In other words, we have used the data regarding HCE (yuan), UHCE (yuan), RHCE (yuan), length of railways in operation (km), and length of highways (km) for nine Chinese provinces directly affected by OBOR. These data can serve as a basis for calculating the indicators to ensure comparability among provinces in this study.

4. Results and Analysis

4.1. Descriptive statistics and Graphical Presentation

To analyze the relationship between the development level of physical TI and HCE, we have calculated the indicators reflecting the difference between UHCE and RHCE, and the densities of railways and highways according to provinces and years, and put these processed data into graphs. Calculating the (UHCE-RHCE) (yuan), densities of railways and highways, and their averages are as follows (see tables 1 and 2).

Province	Indicator	Year										Year-
		2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	specific
	HCE (Yuan)	6,483	7,154	8,474	10,053	11,852	13,206	14,812	15,363	16,657	18,485	12,253.9
Shaanxi	(UHCE- RHCE) (Yuan)	8,230	8,876	10,217	11,516	12,471	13,000	13,979	13,933	14,438	15,457	12,212
	The density of railways ^a	15.564	16.050	19.941	19.941	19.941	21.400	21.887	21.887	22.373	24.31	20.3307
	(km/1000 km²)											
	The density of highways ^b (km/1000 km²)	637.15	700.875	717.4125	739.299	785.0195	803.501	812.7432	827.3346	839.0078	848.24	771.0603
Gansu	HCE (Yuan)	4,947	5,509	6,234	7,493	8,542	9,616	10,678	11,868	13,086	14,203	9,217.6
-	(UHCE- RHCE) (Yuan)	7,495	7,991	8,755	9,597	10,485	11,082	12,264	13,225	14,347	14,949	11,019

 Table 1. Province- and year-specific (UHCE- RHCE) (yuan), densities of railways and highways, and their averages (Inland provinces)

					© Abiri-I	Franklin & Ol	lugasa					
	The density of railways	5.6364	5.6364	5.6364	5.6364	5.8713	6.1061	7.984	8.9243	9.6289	11.038	7.2099
-	The density of highways	248.0038	267.731	279.2391	290.512	308.1259	313.762	324.3307	329.0277	335.8384	334.19	303.0765
	(km/1000 km²)											
Qinghai	HCE (Yuan)	5,830	6,501	7,326	8,744	10,289	12,070	13,534	15,167	16,751	18,020	11,423.2
	(UHCE- RHCE) (Yuan)	6,695	7,410	8,030	8,443	8,910	10,663	11,245	12,108	12,256	11,753	9,751
	The density of railways	2.353593	2.35359	2.630486	2.63048	2.630486	2.63048	2.907379	3.184272	3.184272	3.1842	2.768932
-		70.26070	02.0064	06 1120	00.0011	01 27 479	07.0510	100 (507	104 6657	100 0101	112.00	0.00004
	of highways (km/1000 km ²)	/8.360/9	83.2064	86.1138	89.0211	91.37478	97.0510	100.6507	104.6657	108.8191	112.00	86.90294
Ningxia	HCE (Yuan)	7,108	7,918	8,992	10,937	12,120	13,537	15,193	17,210	18,570	21,058	13,264.3
	(UHCE- RHCE) (Yuan)	8,547	9,610	10,834	11,938	12,265	12,609	12,758	14,991	15,404	15,931	12,489
-	The density of railways	12.04819	13.5542	18.07229	19.57831	19.57831	19.57831	19.57831	19.57831	19.57831	21.0843	18.22289 2
_	(km/1000 km²)											
	The density of highways	316.2651	328.313	338.8554	368.975	399.0964	430.722	471.3855	500	510.5422	521.08	418.5241
	(km/1000 km ⁻)											
Xinjiang	HCE (Yuan)	5,521	5,945	7,400	8,895	10,675	11,401	12,435	13,684	15,247	16,736	10,793.9
	(UHCE- RHCE) (Yuan)	7,196	7,337	8,991	10,168	12,032	12,343	12,317	12,838	13,456	14,657	11,134
-	The density of railways	1.686747	2.22891	2.53012	2.59036	2.831325	2.83132	3.313253	3.554217	3.554217	3.5542	2.867469
_	(km/1000 km²)											
	The density of highways	88.37349	90.7831	92.04819	93.4939	99.93976	102.530	105.7229	107.4096	109.6988	111.62	100.1626
	(km/1000 km²)											
Total	HCE											11,390.5
mean ^c	(Yuan)											8
	(UHCE- PHCE)											11,321
	(Yuan)											
-	The density											10.27999
	of railways											
	(km/1000 km²)											
	The density											335.9453
	of highways											
	(km/1000 km²)											

Source: National Bureau of Statistics of China (2019)

Note: a. Length of railways in operation (km)/Area (1 000km²),

b. Length of highways in operation (km)/Area (1 000km²),

c. Sum of the province- and year-specific means / Number of provinces

Business Perspective Review 4(1), 2022

Table 2. Province- and year-specific (UHCE- RHCE) (yuan), densities of railways and highways, and their averages (Coastal provinces)

Province	Indicator						Year	,				Year-
		2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	 specific mean
	HCE (Yuan)	10,645	11,336	13,187	14,958	16,144	17,115	19,099	20,828	23,355	25,969	17,263.6
Fujian	(UHCE- RHCE) (Yuan)	9,261	9,414	10,731	11,326	11,126	11,578	11,734	11,571	12,206	12,589	11,154
	The density of railways ^a (km/1000 km ²)	13.1795	17.2981	17.29819	17.29819	18.94563	22.24053	23.06425	26.35914	26.3591	26.3591	20.84019
	The density of highways ^b	729.8188	737.232	749.5881	760.2965	780.0659	819.6046	833.6079	861.6145	879.736	889.621	804.1186
Guang	(km/1000 km²) HCE	13 011	15 243	17 211	10 578	21 823	23 730	24 582	26 365	28 405	30 762	22 170 9
-dong	(Yuan)	13,911	15,245	17,211	19,378	21,823	23,739	24,382	20,303	28,493	30,702	22,170.9
	(UHCE- RHCE) (Yuan)	14,126	15,319	16,904	17,673	19,371	20,526	17,542	19,049	19,883	21,314	18,171
	The density of railways	12.22222	13.8888	15	15.55556	15.55556	19.44444	22.22222	22.22222	23.3333	23.3333	18.27777
	The density of highways (km/1000 km ²)	1017.778	1027.77	1056.111	1059.444	1082.778	1127.222	1178.333	1200	1211.66	1220	1,118.111
Guangxi	HCE (Yuan)	6,152	6,968	7,920	9,181	10,519	11,710	12,944	13,857	15,013	16,064	11,032.8
	(UHCE- RHCE) (Yuan)	8,086	9,161	10,175	11,010	12,102	13,390	13,874	13,637	14,266	13,599	11,930
	The density of railways	11.36364	13.0471	13.46801	13.46801	13.46801	16.83502	19.78114	21.46465	21.8855	21.8855	16.66666
	The density of highways	417.9293	422.979	428.4512	441.4983	454.1246	468.8552	483.5859	496.633	507.154	518.939	464.0151
Hainan	(km/1000 km²) HCE	6 13/	6 605	7 553	0.238	10.634	11 712	12 015	17.010	18/131	20.030	12 127
Taman	(Yuan)	0,154	0,095	7,555	9,238	10,034	11,/12	12,915	17,019	10,451	20,939	12,127
	(UHCE- RHCE) (Yuan)	6,677	6,768	7,519	8,068	9,048	8,805	8,452	14,502	14,152	15,835	9,983
	The density of railways (km/1000 km ²)	11.29944	11.2994	19.77401	19.77401	19.77401	19.77401	19.77401	28.24859	28.2485	28.2485	20.62146
	The density of highways	525.4237	564.971	598.8701	646.8927	686.4407	703.3898	734.4633	759.887	796.610	867.232	688.4180
T 1	(km/1000 km²)											15 640 57
Total mean ^c	HCE (Yuan)											15,648.57
	(UHCE- RHCE) (Yuan)											12,809.5
	The density of railways											19.10153
	$(\text{km}/1000 \text{ km}^2)$											769 6657
	highways											/08.003/
	(km/1000 km²)											

Source: National Bureau of Statistics of China (2019)

Note: a. Length of railways in operation (km)/Area (1 000km²), b. Length of highways in operation (km)/Area (1 000km²), c. Sum of the province- and year-specific means / Number of provinces

© Abiri-Franklin & Olugasa

Calculating the indicator-specific averages in tables 3 and 4 is of significance in studying the differences among provinces comparatively. In other words, it is possible to show the development level of TI, level of HCE, and the difference between UHCE and RHCE according to provinces representatively through a comparison of indicator-specific averages, and understand the relationship between these indicators indirectly. Describing the calculated data with graphs is as follows (Figs 1 and 2).

Fig 1. Province-specific averages of HCE, the difference between UHCE and RHCE, and densities of railways and highways (Inland provinces)

Source: Based on table 1

As seen in fig 1, among inland provinces, Ningxia has the highest living standards (13,264.3 yuan) and Gansu has the lowest (9,217.6 yuan). On the other hand, Ningxia has the largest difference between UHCE and RHCE (12,489 yuan), and Qinghai has the smallest (9,751 yuan). And Shaanxi is the highest (respectively, 20.3307393km/1000 km² and 771.060311 km/1000 km²) and Qinghai is the lowest (respectively, 2.76893257 km/1000km² and 86.9029489 km/1000km²) with regards to the development level of railways and highways. The impacts of the development level of TI on HCE and (UHCE-RHCE) are discussed in the next subsections. Illustrations in fig 2 are similar to fig 1. Among coastal provinces, Fujian has the highest living standards (17,263.6 yuan), and Hainan has the lowest (1,212.7 yuan). On the other hand, Guangdong has the largest difference between UHCE and RHCE (18,171 yuan), and Hainan has the smallest (9,983 yuan). And while Hainan is the highest (20.6121469km/1000km²) in terms of railways, Guangdong is the highest (1118.1111 km/1000km²) in terms of highways. Guangxi is the lowest in both railways and highways (respectively, 18.277778 km/1000km² and 464.01515 km/1000km²).

Fig 2. Province-specific averages of HCE, the difference between UHCE and RHCE, and densities of railways and highways (Coastal provinces)

Source: Based on table 2

Comparison of province-specific averages has merits of showing the indicator-specific differences according to provinces but has demerits of not conducting the summary assessment for all inland and coastal provinces dynamically. From this, it is possible to calculate year-specific averages of every indicator for all of inland and coastal provinces and to study general tendencies based on them (see tables 3, 4 and figs 3, 4).

		and ucus	incs of rai	iways and	i mgn wa	y s (1 m m	land prov	mees		
Indicator	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Mean HCE (100Yuan)	597.78	660.54	768.52	922.44	1,069.56	1,196.6	1,333.0	1,465.8	1,606.2	1,770.0
Mean UHCE (100Yuan)	1,056.7	1,147.1	1,305.7	1,496.7	1,679.86	1,830.4	1,981.9	2,142.9	2,295.0	2,467.1
Mean RHCE (100Yuan)	293.44	322.7	369.22	463.48	556.6	636.46	730.66	801.04	897	1,012.2
(Mean UHCE-Mean RHCE) (100Yuan)	763.26	824.48	936.54	1,033.2	1,123.26	1,193.94	1,251.2	1,341.9	1,398.0	1,454.9
The density of railways (km/1000 km²)	7.457837	7.964752	9.762196	10.07545	10.17061	10.50941	11.13421	11.42567	11.66386	12.63599
The density of highways (km/1000 km²)	273.6325	294.1819	302.7338	316.2605	320.2638	349.5137	362.9666	373.6875	380.7812	385.4315

Table 3. Year-specific averages of HCE, UHCE, RHCE, the difference between UHCE and RHCE,and densities of railways and highways (All inland provinces)

Source: Based on table 1.

Fig 3. Graphic description of year-specific averages of HCE, UHCE, RHCE, the difference between UHCE and RHCE, and densities of railways and highways (inland provinces).

Source: Busea on there et

Table 4. Year-specific averages of HCE, UHCE, RHCE, the difference between UHCE and RHCE,
and densities of railways and highways (Coastal provinces)

Indicator	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Mean HCE (100Yuan)	921.05	1,006.05	1,146.775	1,323.875	1,478	1,606.9	1,738.5	1,951.725	2,132.35	2,343.35
Mean UHCE (100Yuan)	1,380.225	1,482.85	1,661.025	1,856.05	2,037.9	2,180.675	2,279.975	2,557.425	2,742.025	2,959.6
Mean RHCE (100Yuan)	426.475	466.3	527.8	654.125	746.725	823.2	989.925	1,088.45	1,229.35	1,376.175
(Mean UHCE- Mean RHCE) (100Yuan)	953.75	1,016.55	1,133.225	1,201.925	1,291.175	1,357.475	1,290.05	1,468.975	1,512.675	1,583.425
The density of railways (km /1000 km²)	12.01622	13.88341	16.38505	16.52394	16.9358	19.5735	21.21041	24.57365	24.95665	24.95665
The density of highways (km /1000 km²)	672.7374	688.2404	708.2551	727.033	750.8522	779.768	807.4976	829.5336	848.792	873.948

Source: Based on table 2.

In figures 3 and 4, it is seen that indicators being interested grow continuously for all inland and coastal provinces. The only exception is the difference between UHCE and RHCE. For a comprehensive comparison of all inland and coastal provinces, calculating indicator-specific total means from tables 5 and 6 and putting them into a graph is as follows (see table 5 and fig. 5).

Fig 4. Graphic description of year-specific averages of HCE, UHCE, RHCE, the difference between UHCE and RHCE, and densities of railways and highways (Coastal provinces) Source: Based on table 4.

Table 5. Comparison of inland with the coastal provinces using indicator-specific total means^a

Indicator	Inland Provinces	Coastal Provinces
Total mean HCE (100Yuan)	1,139.058	1,564.858
Total mean UHCE (100Yuan)	1,740.366	2,113.775
Total mean RHCE (100Yuan)	608.282	832.8525
(Total mean UHCE- Total mean RHCE) (100Yuan)	1,132.084	1,280.923
The total mean density of railways (km/1000 km ²)	10.28	19.10153
The total mean density of highways (km/1000 km ²)	335.9453	768.6657

Source: Based on tables 1 and 2.

Note: a Sum (province- and year-specific averages of indicators)/number of years

From figure 5, it is seen that coastal provinces are higher than inland provinces concerning all indicators. In other words, this means that coastal provinces developed compared to inland provinces.

As seen above, it is seen that there are differences in HCE and densities of railways and highways among provinces, and coastal provinces are higher than inland provinces concerning indicators by processing the data, calculating the descriptive statistics, and conducting the graphic description. However, this is significant in showing the changes and features of indicators according to provinces directly and showing the relationship between indicators indirectly, but it has limitations in analyzing the impacts of TI's development level on HCE and the difference between UHCE and RHCE. One of the research focuses of this paper is to analyze the influences of the development level of TI such as railways and highways on HCE and the difference between UHCE, and this can be analyzed by correlation and regression analysis methods.

Fig 5. Comparison of the inland with the coastal provinces using indicator-specific total means. Source: Based on table 5.

4.2. Correlation and Regression Analysis

To analyze the correlation between indicators, we have selected HCE and the difference between UHCE and RHCE as dependent variables and densities of railways and highways as independent variables. We have conducted the correlation and regression analysis and assessed summarily for all inland and coastal provinces, because to analyze and assess the impacts of independent variables on dependent ones according to individual provinces is complicated in calculation, and the procedures of applying correlation and regression analysis methods are same.

First of all, calculate the correlation coefficients to analyze correlations between indicators for all inland and coastal provinces (see table 6). From table 6, it is seen that while impacts of TI's elements on HCE are relatively weak in inland provinces, their impacts are strong in coastal provinces. Also, the impacts of TI's elements on the difference between UHCE and RHCE are stronger than those on HCE in inland provinces, and the development level of highways has a more significant influence on HCE or the difference between UHCE and RHCE than railways in coastal provinces. Correlation coefficients are statistically significant at the one percent level of significance.

Table 6. Correlation coefficients ^a										
Province	Independent	Density of railways	Density of highways	Correlation between						
		(km/1000 km²)	$(km/1000 km^{2})$	independent variables						
	Dependent									
Inland provinces ^b	HCE (yuan)	.389**	.282*	.916**						
	UHCE-RHCE (yuan)	.511**	.421**	.916**						
Coastal provinces ^c	HCE (yuan)	.651**	.833**	.331*						
	UHCE-RHCE (yuan)	.340*	.740**	.331*						

Note: **: Correlation is significant at the 0.01 level (2-tailed). *: Correlation is significant at the 0.05 level (2-tailed). a Pearson Correlation, ^b number of observations = 50, ^c number of observations = 40.

Next, conduct the regression analysis for all inland and coastal provinces. This aims to analyze and estimate the impacts of the development level of railways and highways on HCE and the difference between UHCE and RHCE for the inland and coastal provinces. The results of the regression analysis are

described in Appendix A (see Appendix A). As a result, the significance of regression models and equations are tested, and thus, this enables us to analyze and estimate the impacts of densities of railways and highways on HCE and the difference between UHCE and RHCE for all inland and coastal provinces. As a result of regression analysis, regression equations constructed according to dependent variables for all inland and coastal provinces are as follows.

All inland provinces;

$$y_1 = 9512.403 + 429.805x_1 - 7.525x_2$$

$$y_2 = 9718.616 + 251.302x_1 - 2.906x_2$$

All coastal provinces;

 $y_1 = -8634.371 + 543.241x_1 + 18.091x_2$ $y_2 = 2620.789 + 83.661x_1 + 11.176x_2$ where y_1 - HCE (Yuan), y_2 - UHCE – RHCE (Yuan)

 x_1 - density of railways (km/1000km²), x_2 - density of highways (km/1000km²)

Here we have investigated the relationship between densities of railways, highways, and HCE, or the difference between UHCE and RHCE for the Chinese provinces directly affected by OBOR, and analyzed the impacts of railways and highways on HCE or the difference between UHCE and RHCE using correlation and regression analysis.

First of all, indicator-specific differences among provinces were described by calculating the indicatorspecific averages and putting them into graphs. According to these, there are differences between mean HCE, mean difference between UHCE and RHCE (mean UHCE – mean RHCE), and mean densities of railways and highways among the provinces. In other words, consumption expenditures increase or the difference between UHCE and RHCE does not decrease in proportion to the development level of railways and highways according to provinces. The graphic presentation revealed that the above indicators grew continuously for 10 years for the inland and coastal provinces. However, this does not mean that HCE entirely depends on the development level of TI. Also, a graphic description for the inland and coastal provinces using indicator-specific total means is conducted, and this shows that coastal provinces are higher than inland provinces for all indicators. Next, to analyze the impact of TI on HCE, correlation and regression analyses were conducted for all the inland and coastal provinces. Calculated correlation coefficients show that correlations between TI and HCE for inland provinces differ from ones for coastal provinces and that there is a strong correlation between the development level of highways and the difference between UHCE and RHCE in coastal provinces. The results of regression analysis including the contribution of independent variables to dependent variables (R^2), regression coefficients, and estimation results differ between inland and coastal provinces (see Appendix A).

5. Discussion

Calculating indicator-specific averages and comparing them according to provinces, it is seen that certain tendencies do not exist. In other words, a general conclusion regarding which development of TI has a significant impact on consumption level in the given region is not drawn. While HCE gets higher in proportion to the development level of TI in some provinces, it is not in others. On the contrary, some provinces are relatively higher than others in the development level of TI but are lower in HCE. This enables us to understand the features in the relationship between indicators according to provinces but it does not provide general tendencies.

From this, indicator- and year-specific averages and total means were calculated and put into graphs for all the inland and coastal provinces. It was found that coastal provinces are larger than inland provinces for all indicators. However, the above methods don't show the direct relationship between dependent and independent variables. As a result of correlation analysis is conducted, it is revealed that the impacts of TI on HCE in inland provinces are not significant enough compared to coastal provinces, and TI has a certain

© Abiri-Franklin & Olugasa

impact on HCE, but the development level of highways has a significant impact on the difference between UHCE and RHCE in coastal provinces. Based on such correlation, regression analysis was conducted. As a result of regression analysis, it is viewed that in terms of the contribution of independent variables, inland provinces have lower scores than coastal provinces. In other words, contributions of independent variables to the dependent variable (HCE) are relatively higher (.923 and .852). From the results that constructed regression equations based on regression coefficients and conducted estimation, it is seen that deviations between actual and predicted values are not consistent for the provinces. Analysis with regression models shows that while the density of railways has a positive impact on HCE and the difference between UHCE in inland provinces, the densities of railways and highways have a positive impact on HCE and the difference between UHCE and RHCE in coastal provinces. Furthermore, it can be seen that while the positive impact of density of railways on the difference between UHCE and RHCE in inland provinces, the positive impact of density of railways on the difference between UHCE and RHCE in coastal provinces. Furthermore, it can be seen that while the positive impact of density of railways on the difference between UHCE and RHCE in inland provinces, the positive impact of density of railways on the difference between UHCE and RHCE in inland provinces.

6. Conclusion

In this study, we have calculated the indicators such as HCE, the difference between UHCE and RHCE, and densities of railways and highways and their averages, and have conducted the correlation and regression analyses to reveal the relationship between living standards and TI's elements such as railways and highways in the Chinese provinces directly affected by OBOR. Research problems are as follows; a) Is the living standards enhanced or does the difference between urban and rural regions in living standards decrease in proportion to the development level of railways and highways in given provinces, and b) How do the development levels of railways and highways affect the living standards in given regions? Conclusions from the analysis are summarized as follows. The first conclusion is that living standards are not improved in proportion to the development level of railways and highways due to influences of various factors on living standards in the Chinese provinces directly affected by OBOR. It is from calculation results of the province- and indicator-specific averages. The second is that the development level of TI has not enough influence on reducing the gap in living standards between urban and rural regions in the Chinese provinces directly affected by OBOR. This is concerned with the fact that the higher the development level of TI gets, the larger the gap in living standards between urban and rural regions becomes, except for some cases. The third is that the development level of TI has a relatively more significant impact on living standards, in particular, on HCE in coastal provinces than inland provinces. This is from the calculation of correlation and contribution coefficients of independent variables to dependent ones for all inland and coastal provinces. The fourth is that in the future, the measures to develop the TI provably contribute to achieving targets for enhancing the living standards under the realization of OBOR. This is from estimation results with regression equations.

Certainly, our analysis does not consider the socio-economic and geographic features of individual provinces starting from the purpose of revealing the general tendencies and conclusions. Therefore, in the future, it is necessary to deepen analysis according to individual provinces directly affected by OBOR to take concrete infrastructure-related measures.

Authors' Contribution: Gwang-Nam Rim conceived the idea and collected data; Chol-Ju An analyzed the data; Gwang-Nam Rim wrote the paper.

Conflict of Interest: The authors declare no conflict of interest.

REFERENCES

- Balisacan, A. M. & Pernia, E. M. (2002), *Probing beneath cross-national averages: poverty, inequality, and growth in the Philippines*, 7, ERD working paper series, Economics and Research Department, Asian Development Bank, Manila.
- Behrman, J. & Wolfe, B., (1987), How does Mother's Schooling Affect Family Health, Nutrition, Medical Care Usage, and Household Sanitation? *Journal of Econometrics*, 36, 185-204.
- Bhattarai, M. & Narayanamoorthy, A. (2003). *Impact of irrigation on agricultural growth and poverty alleviation: macro-level analyses in India*. IWMI-TATA Water Policy Program, Water policy.
- Brenneman, A. & Kerf, M., (2002). Infrastructure and Poverty Linkages: A Literature Review. The World Bank, Mimeo.
- Calderón, C. & Servén, L. (2004). *The effects of infrastructure development on growth and income distribution*, 3400, World bank policy research working paper. World Bank, Washington, DC.
- Chunping, Z. & Menghan, D. (2019). Has the transportation infrastructure construction narrowed the income gap? An empirical analysis based on provincial panel data. School of Business, Yangzhou University, Yangzhou 225000, China. https://doi.org/10.15963/j.cnki.cn12.1401/f.2019.03.009
- Deininger, K. & Okidi, J. (2002). Growth and poverty reduction in Uganda, 1992–2000: panel data evidence. World Bank/Economic Policy Research Council, Washington, DC/Kampal.
- Estache, A. & Fay, M. (1995). Regional Growth in Argentina and Brazil: Determinants and Policy Options. Washington, DC: The World Bank, Mimeo.
- Estache, A., Gomez-Lobo, A., & Leipziger, D. (2000). *Privatization and the Needs of the Poor in Latin America*. The World Bank, Mimeo.
- Estache, A. (2003). On Latin America's Infrastructure Privatization and its Distributional Effects. Washington, DC: The World Bank, Mimeo.
- Fan, S., Zhang, LX., & Zhang XB. (2002). Growth, inequality, and poverty in rural China: the role of public investments, 125, Research report. International Food Policy Research Institute, Washington, DC
- Fan, S. & Zhang, X. (2008). Public expenditure, growth, and poverty reduction in rural Uganda. *African Development Review*, 20(3), 466
- Ferreira, F. (1995). *Roads to equality: wealth distribution dynamics with public-private capital complementarity*. LSE Discussion Paper TE/95/286.
- Gannon, C. & Liu, Z. (1997). Poverty and Transport. Washington, DC: The World Bank, Mimeo.
- Galiani, S., Gertler, P., & Schargrodsky, E. (2002). Water for Life: The Impact of the Privatization of Water Services on Child Mortality. Universidad de San Andrés, Working Paper No. 54, September.
- Haggai, K. (2016). One Belt One Road Strategy in China and Economic Development in the Concerning Countries. World Journal of Social Sciences and Humanities, 2(1), 10-14. https://doi.org/10.12691/wjssh-2-1-2.
- Huang, Q., Dawe, D., Rozelle, S., Huang, J., & Wang, J. (2005). Irrigation, poverty, and inequality in rural China. *Australian Journal of Agricultural and Resource Economy*, 49,159–175.
- Jacoby, H. (2000). Access to Rural Markets and the Benefits of Rural Roads, The Economic Journal, 110, 713-37.
- Khandker, S. R., Bakht, Z., & Koolwal, G. B. (2009), The poverty impact of rural roads: evidence from Bangladesh. *Economic Development and Cultural Change*, 57, 685–722.
- Lavy, V., Strauss, J., Thomas, D., & de Vreyer, P. (1996). Quality of Health Care, Survival and Health Outcomes in Ghana, *Journal of Health Economics*, 15, 333-57.
- Lee, L., Rosenzweig, M., & Pitt, M. (1997). The Effects of Improved Nutrition, Sanitation, and Water Quality on Child Health in High-Mortality Populations. *Journal of Econometrics*, 77, 209-35.
- Leipziger, D., Fay, M., Wodon, Q., & Yepes, T. (2003). Achieving the Millennium Development Goals: The Role of Infrastructure. The World Bank Policy Research Working Paper 3163, November.
- López, H. (2004). *Macroeconomics and Inequality*. The World Bank Research Workshop, Macroeconomic Challenges in Low-Income Countries, October.
- Mu, R. & Van De Walle, D. (2007). *Rural roads and poor area development in Vietnam*. World Bank Policy Research Working Paper No 4340, The World Bank, Washington, DC.
- National Development and Reform Commission, Ministry of Foreign Affairs, and Ministry of Commerce of the People's Republic of China, (2015). Visions and Proposed Actions on Jointly Building Silk Road Economic Belt and 21st-Century Maritime Silk Road. http://en.ndrc.gov.cn/newsrelease/201503/t20150330_669367.html.
- National Bureau of Statistics of China. (2019). National Data. http://www.stats.gov.cn/english/
- WARR, P. (2005). Road development and poverty reduction: the case of Lao PDR, *Pacific Economic Review*, 230 (64) ,77-90.
- Yang, Qi & Yin, Huabei. (2017). An Empirical Study on the Impact of Infrastructure Investment and Structure and Regional Difference on the Consumption of Rural Residents, *Consumer Economics*, 33(4), 1007-5682

© Abiri-Franklin & Olugasa

Zou, W., Zhang, F., & Zhuang, Z, et al. (2008). Transport infrastructure, growth and poverty alleviation: an empirical analysis of China, *Annals of Economics and Finance*, 9 (2), 245-371.

© 2022 by the authors. Licensee *Research & Innovation Initiative Inc.*, Michigan, USA. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<u>http://creativecommons.org/licenses/by/4.0/</u>).

Appendix A: Results of regression analysis

			er o annuar	J	
Model		R	\mathbb{R}^2	Adjusted R2	Standard error of estimate
Inland	HCE (yuan)	.432ª	.186	.152	3824.903
	UHCE-RHCE (yuan)	.524ª	.275	.244	2207.313
Coastal	HCE (yuan)	.923ª	.852	.844	2572.215
	UHCE-RHCE (yuan)	.747ª	.557	.533	2705.017

Table A.1. Model Summarv^b

Note: ^a Predictors: (Constant), the density of highways (km/1000 km²), the density of railways (km/1000 km²), ^b Dependent Variable: HCE (yuan), UHCE-RHCE (yuan),

			1 abit 11.2. 1				
Model			Sum of Squares	Degree of freedom	Mean Square	F	Significance
Inland	HCE (yuan)	Regression Residual Total	1.574E8 6.876E8 8.450E8	2 47 49	7.871E7 1.463E7	5.380	.008 ^a
	UHCE- RHCE (yuan)	Regression Residual Total	8.668E7 2.290E8 3.157E8	2 47 49	4.334E7 4872228.6 35	8.896	.001ª
Coastal	HCE (yuan)	Regression Residual Total	1.408E9 2.448E8 1.653E9	2 37 39	7.041E8 6616289.5 76	106.420	.000ª
	UHCE- RHCE (yuan)	Regression Residual Total	3.409E8 2.707E8 6.116E8	2 37 39	1.704E8 7317114.5 20	23.293	.000ª

Table A.2. ANOVA^b

Note: ^a Predictors: (Constant), the density of highways (km/1000 km²), the density of railways (km/1000 km²), ^b Dependent Variable: HCE (yuan), UHCE-RHCE (yuan)

Business Perspective Review 4(1), 2022 Table A.3. Coefficients^a

			1 4010 11:01	Coefficient	65		
Model			Unstandardiz	ed	Standardized	t	Significance
			Coefficients		Coefficients	_	
				Standard			
			В	Error	Beta		
Inland	HCE (yuan)	(Constant) The density of railways	9,512.403	910.434		10.448	.000
		$(km/1000 \ km^2)$	429.805	173.164	.815	2.482	.017
		The density of highways					
		$(km/1000 \ km^2)$	-7.525	5.320	464	-1.414	.164
	UHCE- RHCE (yuan)	(Constant) The density of railways	9,718.616	525.402		18.497	.000
		$(km/1000 \ km^2)$	251.302	99.9317	779	2.515	.015
		The density of highways					
		$(km/1000 \ km^2)$	-2.906	3.070	293	947	.349
Coastal	HCE (yuan)	(Constant) The density of railways	-8,634.371	1,797.452		-4.804	.000
		$(km/1000 \ km^2)$	543.241	86.4659	.421	6.283	.000
		The density of highways					
		$(km/1000 \ km^2)$	18.091	1.748	.694	10.347	.000
	UHCE- RHCE (yuan)	(Constant) The density of railways	2,620.789	1,890.253		1.386	.174
		(km/1000 km²)	83.661	90.930	.107	.920	.364
		The density of highways					
		$(km/1000 \ km^2)$	11.176	1.839	.704	6.078	.000

^a Dependent Variable: HCE (yuan), UHCE-RHCE (yuan)

-

Case Number	Standard. Residual	HCE (Yuan)	Predicted Value	Residual	Standard. Residual	UHCE-RHCE (Yuan)	Predicted Value	Residual
1	-1.288	6483	11407.63	-4.925E3	-1.607	8230	11778.11	-3.548E3
2	-1.041	7154	11137.24	-3.983E3	-1.286	8876	11715.16	-2.839E3
3	-1.101	8474	12685.20	-4.211E3	-1.100	10217	12644.93	-2.428E3
4	645	10053	12520.51	-2.468E3	483	11516	12581.31	-1.065E3
5	085	11852	12176.49	-324.487	.010	12471	12448.43	22.565
6	.142	13206	12664.56	541.438	.108	13000	12761.40	238.596
7	.525	14812	12804.07	2.008E3	.508	13979	12856.77	1.122E3
8	.698	15363	12694.28	2.669E3	.507	13933	12814.37	1.119E3
9	1.004	16657	12815.49	3.842E3	.696	14438	12902.67	1.535E3
10	1.282	18485	13582.16	4.903E3	.948	15457	13364.72	2.092E3
11	-1.339	4947	10068.86	-5.122E3	-1.323	7495	10414.28	-2.919E3

Г

© Abiri-Franklin & Olugasa									
12	-1.153	5509	9920.41	-4.411E3	-1.072	7991	10356.94	-2.366E3	
13	941	6234	9833.82	-3.600E3	711	8755	10323.50	-1.568E3	
14	590	7493	9749.00	-2.256E3	314	9597	10290.73	-693.732	
15	307	8542	9717.40	-1.175E3	.084	10485	10298.56	186.441	
16	042	9616	9775.93	-159.932	.336	11082	10341.20	740.804	
17	.046	10678	10503.94	174.064	.671	12264	10782.63	1.481E3	
18	.260	11868	10872.35	995.645	1.006	13225	11005.06	2.220E3	
19	.513	13086	11123.93	1.962E3	1.443	14347	11162.32	3.185E3	
20	.643	14203	11741.94	2.461E3	1.553	14949	11521.21	3.428E3	
21	-1.073	5830	9934.36	-4.104E3	-1.535	6695	10082.33	-3.387E3	
22	888	6501	9897.90	-3.397E3	-1.204	7410	10068.25	-2.658E3	
23	698	7326	9995.03	-2.669E3	951	8030	10129.38	-2.099E3	
24	321	8744	9973.15	-1.229E3	760	8443	10120.93	-1.678E3	
25	.087	10289	9955.44	333.556	546	8910	10114.09	-1.204E3	
26	.564	12070	9912.73	2.157E3	.256	10663	10097.60	565.404	
27	.923	13534	10004.66	3.529E3	.493	11245	10156.72	1.088E3	
28	1.326	15167	10093.46	5.074E3	.858	12108	10214.63	1.893E3	
29	1.749	16751	10062.20	6.689E3	.930	12256	10202.56	2.053E3	
30	2.087	18020	10038.24	7.982E3	.707	11753	10193.31	1.560E3	
31	-1.360	7108	12311.02	-5.203E3	-1.486	8547	11827.17	-3.280E3	
32	-1.294	7918	12867.66	-4.950E3	-1.160	9610	12170.62	-2.561E3	
33	-1.500	8992	14730.23	-5.738E3	-1.106	10834	13275.38	-2.441E3	
34	-1.102	10937	15150.88	-4.214E3	738	11938	13566.31	-1.628E3	
35	733	12120	14924.24	-2.804E3	550	12265	13478.77	-1.214E3	
36	300	13537	14686.26	-1.149E3	352	12609	13386.85	-777.848	
37	.212	15193	14380.29	812.708	231	12758	13268.67	-510.667	
38	.796	17210	14164.98	3.045E3	.818	14991	13185.50	1.805E3	
39	1.172	18570	14085.65	4.484E3	1.019	15404	13154.86	2.249E3	
40	1.674	21058	14653.63	6.404E3	1.100	15931	13502.69	2.428E3	
41	-1.059	5521	9572.40	-4.051E3	-1.219	7196	9885.65	-2.690E3	
42	-1.005	5945	9787.30	-3.842E3	-1.213	7337	10014.90	-2.678E3	
43	656	7400	9907.24	-2.507E3	496	8991	10086.91	-1.096E3	

67

Business Perspective Review 4(1), 2022										
44	269	8895	9922.25	-1.027E3	.032	10168	10097.85	70.149		
45	.182	10675	9977.32	697.682	.857	12032	10139.67	1.892E3		
46	.377	11401	9957.83	1.443E3	1.002	12343	10132.14	2.211E3		
47	.600	12435	10140.94	2.294E3	.939	12317	10243.97	2.073E3		
48	.903	13684	10231.81	3.452E3	1.150	12838	10299.63	2.538E3		
49	1.316	15247	10214.59	5.032E3	1.433	13456	10292.97	3.163E3		
50	1.709	16736	10200.08	6.536E3	1.980	14657	10287.37	4.370E3		

^a Dependent Variable: HCE (yuan), UHCE-RHCE (yuan)

Source: Own calculation

Г

Case	Standard.	HCE			Standard.	UHCE-		
Number	Residual	(Yuan)	Predicted Value	Residual	Residual	RHCE (Yuan)	Predicted Value	Residual
1	421	10645	11728.73	-1.084E3	968	9261	11879.65	-2.619E3
2	-1.075	11336	14100.25	-2.764E3	-1.070	9414	12307.06	-2.893E3
3	442	13187	14323.79	-1.137E3	634	10731	12445.15	-1.714E3
4	.171	14958	14517.52	440.483	458	11326	12564.82	-1.239E3
5	.145	16144	15770.13	373.868	665	11126	12923.59	-1.798E3
6	451	17115	18275.36	-1.160E3	763	11578	13641.11	-2.063E3
7	.048	19099	18976.18	122.820	788	11734	13866.52	-2.133E3
8	173	20828	21272.78	-444.777	-1.066	11571	14455.17	-2.884E3
9	.682	23355	21600.63	1.754E3	906	12206	14657.70	-2.452E3
10	1.629	25969	21779.45	4.190E3	806	12589	14768.17	-2.179E3
11	975	13911	16418.24	-2.507E3	330	14126	15017.70	-891.702
12	879	15243	17504.55	-2.262E3	.019	15319	15268.89	50.107
13	548	17211	18620.74	-1.410E3	.453	16904	15678.49	1.226E3
14	.231	19578	18982.85	595.154	.706	17673	15762.23	1.911E3
15	.940	21823	19404.98	2.418E3	1.238	19371	16022.99	3.348E3
16	.551	23739	22321.64	1.417E3	1.361	20526	16845.04	3.681E3
17	067	24582	24755.31	-173.313	039	17542	17648.63	-106.632
18	.473	26365	25147.29	1.218E3	.428	19049	17890.77	1.158E3
19	.985	28495	25961.96	2.533E3	.654	19883	18114.11	1.769E3
20	1.808	30762	26112.72	4.649E3	1.149	21314	18207.24	3.107E3
21	.409	6152	5099.73	1.052E3	058	8086	8242.14	-156.137
22	.335	6968	6105.65	862.350	.267	9161	8439.42	721.577

Table A.4. Casewise Diagnostics^a (Coastal provinces)

1

68

© Abiri-Franklin & Olugasa									
23	.578	7920	6433.27	1.487E3	.606	10175	8535.78	1.639E3	
24	.976	9181	6669.31	2.512E3	.861	11010	8681.59	2.328E3	
25	1.408	10519	6897.74	3.621E3	1.212	12102	8822.70	3.279E3	
26	1.056	11710	8993.33	2.717E3	1.523	13390	9269.01	4.121E3	
27	.810	12944	10860.28	2.084E3	1.550	13874	9680.11	4.194E3	
28	.718	13857	12010.87	1.846E3	1.357	13637	9966.77	3.670E3	
29	1.004	15013	12429.86	2.583E3	1.533	14266	10119.57	4.146E3	
30	1.330	16064	12643.06	3.421E3	1.238	13599	10251.27	3.348E3	
31	340	6134	7009.58	-875.579	-1.021	6677	9438.09	-2.761E3	
32	400	6695	7725.06	-1.030E3	-1.150	6768	9880.07	-3.112E3	
33	-2.095	7553	12942.06	-5.389E3	-1.275	7519	10967.90	-3.449E3	
34	-1.778	9238	13810.85	-4.573E3	-1.270	8068	11504.58	-3.437E3	
35	-1.513	10634	14526.33	-3.892E3	-1.072	9048	11946.56	-2.899E3	
36	-1.213	11712	14832.96	-3.121E3	-1.231	8805	12135.98	-3.331E3	
37	964	12915	15395.13	-2.480E3	-1.490	8452	12483.25	-4.031E3	
38	-1.337	17019	20458.81	-3.440E3	.379	14502	13476.37	1.026E3	
39	-1.047	18431	21123.18	-2.692E3	.098	14152	13886.77	265.226	
40	568	20939	22400.82	-1.462E3	.428	15835	14676.02	1.159E3	

^a Dependent Variable: HCE (yuan), UHCE-RHCE (yuan) Source: Own calculation

